Development of a brain-penetrant EGFR inhibitor and non-invasive predictive biomarker of response for glioblastoma

David A. Nathanson, Ph.D.

Associate Professor of Molecular and Medical Pharmacology

UCLA Brain Tumor Program David Geffen School of Medicine at UCLA

Disclosures

- Co-Founder and Shareholder
 - Katmai Pharmaceuticals, Trethera Corporation
- Shareholder
 - \circ Sofie Biosciences
- Contracted Research/MTA/Consulting Agreements
 - o Abbvie
 - o Roche
 - o Sanofi
 - o Astra Zeneca
 - o *Erasca*

Glioblastoma (GBM): A universally fatal malignancy

Days

The epidermal growth factor receptor (EGFR) is frequently altered in GBM

Brain Tumor Center

TCGA Cell, 2013

(IN)

EGFR tyrosine kinase inhibitors (TKIs) have failed for GBM patietns

NSCLC or Breast Cancer

Glioblastoma

Therapy	Clinical Trial	Result	Therapy	GBM Clinical Trial	Result
Erlotinib	NSCLC Phase III (2005)	Recurrent disease: Improved PFS and OS vs chemo	Erlotinib	Phase II (2004)	Failed
Lapatinib	HER2 BrCa Phase III (2006)	Recurrent disease: Improved PFS vs chemo	Lapatinib	Phase I/II (2009)	Failed
Gefitinib	NSCLC Phase III (2010)	Front line setting: Improved PFS and OS vs chemo	Gefitinib	Phase II (2004)	Failed
Afatinib	NSCLC Phase III (2013)	Front line setting of metastatic disease: Improved PFS vs chemo	Afatinib	Phase I/II (2014)	Failed

Sherpherd et. al., *NEJM* (2005); Maemondo et. al., *NEJM* (2010) Sequist., et al. *Journal of Clinical Oncology* (2013); Geyer et. al., *NEJM* (2006)

Reardon et. al., *Neuro-Oncology* (2014); Vogelbaum, M. A., et al. *Journal of Clinical Oncology* (2004); Rich, Jeremy N., et al. *Journal of Clinical Oncology* (2004)

Compound (Brand Name)	Company	Penetration Rate (%)
Afatinib (Gilotrif)	Boehringer Ingelheim	0.7
Erlotinib (Tarceva)	Genentech	8
Gefitinib (Iressa)	AstraZeneca	1.1
Lapatinib (Tykerb/Tyberb)	Lapatinib (Tykerb/Tyberb)	

Bohn et. al., Targ. Oncol, 2016. Vivanco et. al., Can Discov, 2012.

Intracranial GBM fail to recapitulate responses to EGFR TKIs in subcutaneous models

The type of EGFR alteration impacts EGFR TKI affinity

Biology & Medicine 2013

In patients with ECD mutations (e.g., EGFRvIII), both amplified Wild-Type EGFR and EGFRvIII are highly expressed

Fan et al, Cancer Cell 2013

An ideal EGFR TKI for GBM:

Property	Available EGFR TKI		
Target EGFRvIII	Lapatinib, Neratinib		
Target Amplified EGFR	Erlotinib, Gefitinib		
Brain Penetrant	Tagrisso (30%)		

Tim Cloughesy, MD Professor (Neurology/Pharm)

- Led ~100 clinical trials in brain tumors, 10 EGFR-directed
- Involved in development of multiple drugs of various classes (e.g., small molecules, antibody

Michael Jung, PhD Distinguished Professor (Chemistry, Pharm)

- Co-Inventor of 2 FDA approved cancer therapies (Xtandi, Erleada)
- Founder, Trethera

Improved BBB penetrating properties of ERAS-801

Property	<i>Optimal for BBB penetrance</i>	FDA Approved EGFR TKI	ERAS-801
Rotatable Bonds	≤5	*	\checkmark
Lipophilicity (clogP)	≤4	*	\checkmark
H-Bond Donors	≤4	*	\checkmark
H-Bond Acceptors	≤5	*	\checkmark
Polar Surface Area (Ų) ≤80		×	\checkmark
Molecular Weight	≤400	*	<u>≤500</u>

ERAS-801 shows high <u>unbound</u> brain exposures

UCLA

ERAS-801 has potent activity against activated WTEGFR

ERAS-801 is potent against EGFRvIII

ERAS-801 is specific for EGFR

ERAS-801 is potent against EGFR altered patient derived GBM cells with negligible activity against normal brain cells

ERAS-801 significantly extends EGFRvIII PDX survival at <u>clinically relevant exposures</u>

A Preclinical Trial of ERAS-801

GBM patient derived models

Short-Term Goals (n=40-50 unique models)

I) To define the breadth of response across molecularly heterogeneous models

Tumor Recurrence

Primar

Patient Sex

Female

Methylate

Classical

Proneural

EGFRvII

NA Copy Number

EGFRvIII

MGMT Methylation

Molecular Subtyp

Mesynchemal

Amplification Gain Diploid

Partial Deletion

Deletion

Mutation

Mutation

Unmethylate

Recurrent

II) To define the molecular determinants of response

ERAS-801 improves outcome of >90% of EGFR mutant and/or amplified GBM PDXs

Challenge for Clinical Translation in GBM – How do we know drug is reaching the tumor and having a <u>meaningful</u> biological effect

GBM tumor metabolism is regulated by aberrant EGFR signaling

Mai et. al., Nature Medicine 2017 Babic et. al., Cell Metabolism 2013

Rapid dynamics in FDG PET may serve as a non-invasive biomarker for <u>biologically</u> <u>meaningful</u> inhibition of EGFR signaling

Brain Tumor Center Mai et. al., Nature Medicine 2017

ERAS-801 can robustly inhibit intracranial EGFR signaling at predicted clinically relevant doses

Dose dependent changes in FDG is associated with dose dependent change in EGFR signaling with ERAS-801

ERAS-801 induced changes in FDG uptake predict outcome in an orthotopic EGFR altered GBM PDX

Same PDX model: FDG PET delineates ineffective EGFR TKIs compared to ERAS-801 all administered at equivalent dose

Summary

- EGFR is genetically altered in ~60% of GBM patients, yet available EGFR TKI have failed in GBM clinical trials
 - Failure due to 1) insufficient BBB penetration and 2) ³ inability to potently inhibit all oncogenic forms of EGFR found in GBM, including amp WT EGFR and ECD mutants
- ERAS-801 has high BBB penetration (Kpuu: 1.2) and potently inhibits both ECD mutant EGFR (e.g., EGFRvIII) and amplified WT EGFR
- In GBM PDX preclinical trial, ERAS-801 extends survival of >90% of EGFR-altered patient derived orthotopic GBM xenografts with negligible side effects
- FDG PET may serve as a robust, non-invasive biomarker of meaningful target inhibition with ERAS-801

ERAS-801 Convnentional EGFR TKIs 370% Brain Penetrant (Kpuu:1.2) EGFRvIII IC50: 2.5nM EGFR IC50: 1.2nM

Acknowledgment

Quincy Okobi,

Graduate Student

Marissa Pioso, Graduate Dimitri Cadet, MSTP Student

Postdoctoral Researcher

Jonathan Tsang,

PhD Candidate

Christopher Tse, SRA I

Jennifer Salinas,

Student

Rhea Plawat, SRA I Undergraduate Researcher

Student

Eva Zhao, Undergraduate Researcher

Michael Vigman,

Undergraduate Researcher

Nick Bayley, Graduate Student

Henan Zhu, PostDoc

SRA I

Danielle Morrow, PhD Candidate

Esther Peluso, MSTP Student

Research Fellow

Robert Chong, Clinical

Funding and Support

- R01 CA227089 (PI: NATHANSON) ٠
- UCLA SPORE (Project PIs: Cloughesy, Nathanson) .
- National Brain Tumor Society (NBTS)
- **Uncle Kory Foundation**
- Erasca

National

